Search of DM annihilation in Stellar Streams with the Fermi LAT

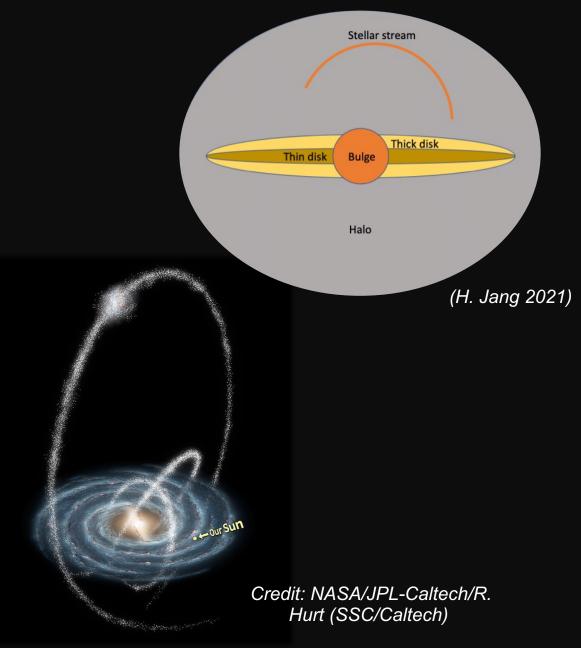
Cristina Fernández-Suárez

In collaboration with Miguel A. Sánchez-Conde

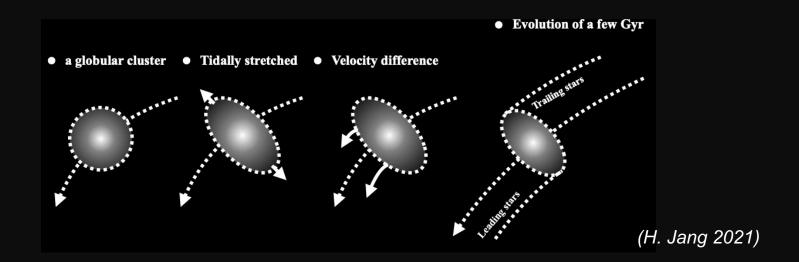
20th MultiDark Workshop

October 25-27, 2023

Motivation

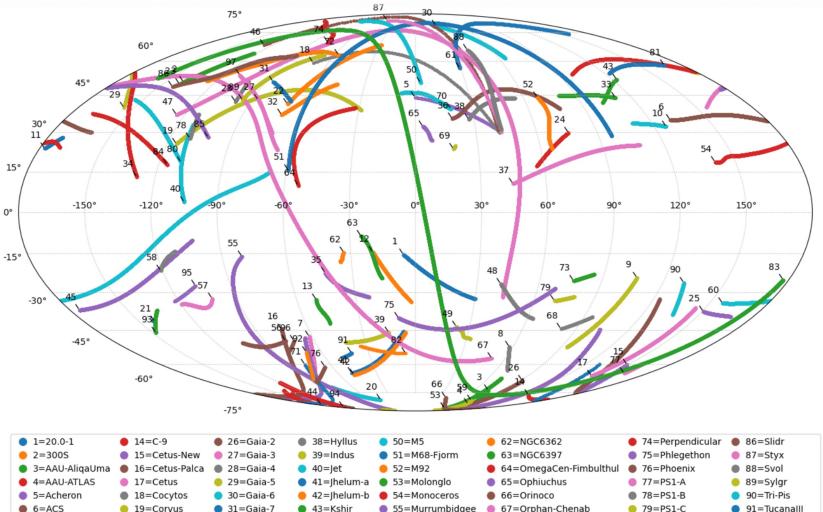

* Different strategies for dark matter (DM) searches.

* Gamma rays as the *golden channel* for DM indirect searches, with many astrophysical targets already scrutinized (galactic center, dwarf spheroidal galaxies, galaxy clusters, ...).


Goal: Explore the potential of considering stellar streams as a new target for DM indirect searches with gamma rays.

What are stellar streams?

- * Narrow tubular galactic structures made of stars, orbiting a galaxy, remnants of ancient globular clusters or dwarf galaxies heavily stripped in the tidal field of the galaxy.
- * Extended structures, with lengths from 1 kpc to more than 100 kpc.
- * Range in heliocentric distance from a few kpc to 100 kpc.



How do stellar streams originated?

- * Streams form as a result of the gravitational tidal force applied by the host Galaxy on the stream's progenitor, which is a globular cluster (GC) or a dwarf galaxy (dG).
- * A GC or a dG orbiting around the galaxy gets tidally stretched by the galactic potential, with the gravitational pull being harder on the closer stars to the galactic centre.
- * The inner stars become a leading arm of the stellar stream while the outer stars form a trailing arm.

Known stellar streams (~ 100)

Observed by wide and deep sky surveys, such as SDSS, Pan-STARRS, Gaia and DESI.

6=ACS 31=Gaia-7 43=Kshir 67=Orphan-Chenab 79=PS1-C 19=Corvus 55=Murrumbidgee 91=Tucanalli 7=Alpheus 20=Elqui 32=Gaia-8 44=Kwando 56=NGC1261 68=Pal13 80=PS1-D 92=Turbio 8=Aquarius 21=Eridanus 33=Gaia-9 45=Leiptr 57=NGC1851 69=Pal15 81=PS1-E 93=Turranburra 9=C-19 22=Gaia-1 34=GD-1 46=Lethe 58=NGC2298 70=Pal5 82=Ravi 94=Vid 10=C-4 23=Gaia-10 35=Gunnthra 47=LMS-1 59=NGC288 71=Palca 83=Sagittarius 95=Wambelong 11=C-5 24=Gaia-11 36=Hermus 48=M2 60=NGC3201-Gjoll 72=Parallel 84=Sangarius 96=Willka_Yaku 12=C-7 25=Gaia-12 37=Hrid 49=M30 61=NGC5466 73=Pegasus 85=Scamander 97=Ylgr 13=C-8

Plot made with the Galstreams library (Mateu et al. 2018, Mateu 2023)

Sample selection

Criteria to build the best sample of stellar streams for gamma-ray DM searches, according to the most relevant properties:

- * Streams whose progenitor is a dwarf Galaxy (dG).
- * Streams closest to us (≤ 100 kpc).
- * Streams whose stellar mass is known.

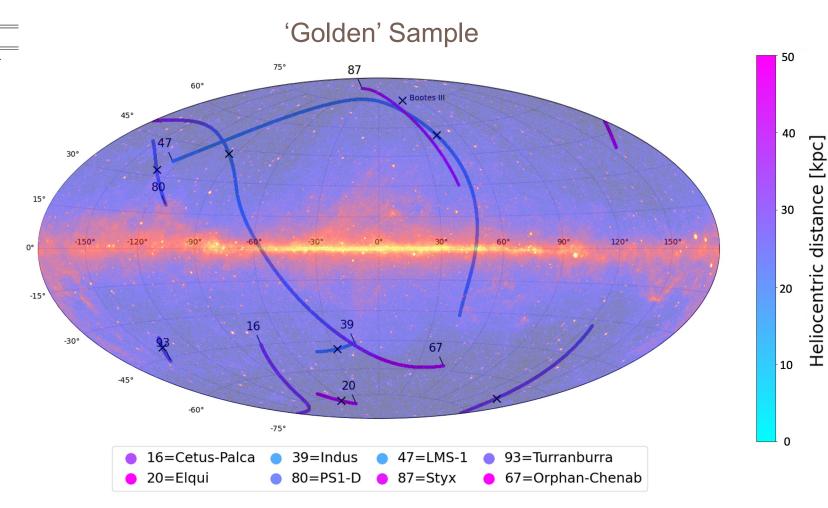
Stream	l (°)	b (°)	$d_{Sun}~({ m kpc})$	Length $(^{\circ})$		
Golden sample						
Indus	(344.8, 318.1)	(-46.1, -50.2)	16.6	18.2		
LMS-1	(235.6, 43.8)	(36.8, -31.8)	18.1	179.2		
Orphan-Chenab	(50.8, 155.4)	(-57.4, 39.8)	20.0	230.6		
PS1-D	(250.3, 205.5)	(18.5, 43.0)	22.9	44.9		
Turranburra	(212.0, 225.4)	(-46.3, -36.9)	27.5	13.7		
Cetus-Palca	(284.8, 123.1)	(-44.9, -32.5)	33.4	100.9		
\mathbf{Styx}	(314.5, 42.7)	(82.7, 30.0)	46.5	60.4		
Elqui	(312.2, 279.6)	(-79.8, -71.9)	50.1	10.9		
Silver sample						
Monoceros	(140, 189.5)	(18, 24.1)	10.6	46.9		
AntiCenter	(199.5, 130.5)	(29.9, 34.8)	11.7	57.7		
Other streams proceeding from dGs						
Jhelum-a	(310.9, 353.5)	(-64.6, -45.5)	13.0	30.0		
Jhelum-b	(311.6, 354.7)	(-65.4, -46.1)	13.0	30.0		
Parallel	(302.8, 234.0)	(62.9, 50.8)	14.3	37.7		
C-19	(106.4, 93.5)	(-24.4, -52.4)	18.0	29.7		
Sagittarius	(177.3, 201.7)	(-25.1, 52.0)	25.0	280.0		

Sample selection

Criteria to build the best sample of stellar streams for gamma-ray DM searches, according to the most relevant properties:

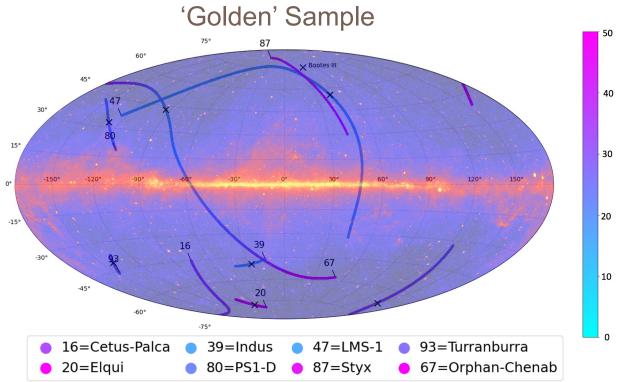
- * Streams whose progenitor is a dwarf Galaxy (dG).
- * Streams closest to us (≤ 100 kpc).
- * Streams whose stellar mass is known.

Stream	l (°)	b (°)	$d_{Sun}~({ m kpc})$	Length (°)		
Golden sample						
Indus	(9110 910 1)		16.6	10.0		
	(344.8, 318.1)	(-46.1, -50.2)		18.2		
LMS-1	(235.6, 43.8)	(36.8, -31.8)	18.1	179.2		
Orphan-Chenab	(50.8, 155.4)	(-57.4, 39.8)	20.0	230.6		
PS1-D	(250.3, 205.5)	(18.5, 43.0)	22.9	44.9		
Turranburra	(212.0, 225.4)	(-46.3, -36.9)	27.5	13.7		
Cetus-Palca	(284.8, 123.1)	(-44.9, -32.5)	33.4	100.9		
\mathbf{Styx}	(314.5, 42.7)	(82.7, 30.0)	46.5	60.4		
Elqui	(312.2, 279.6)	(-79.8, -71.9)	50.1	10.9		
	Silver sample					
Monoceros	(140, 189.5)	(18, 24.1)	10.6	46.9		
AntiCenter	(199.5, 130.5)	(29.9, 34.8)	11.7	57.7		
Other streams proceeding from dGs						
Jhelum-a	(310.9, 353.5)	(-64.6, -45.5)	13.0	30.0		
Jhelum-b	(311.6, 354.7)	(-65.4, -46.1)	13.0	30.0		
Parallel	(302.8, 234.0)	(62.9, 50.8)	14.3	37.7		
C-19	(106.4, 93.5)	(-24.4, -52.4)	18.0	29.7		
Sagittarius	(177.3, 201.7)	(-25.1, 52.0)	25.0	280.0		


Sample selection

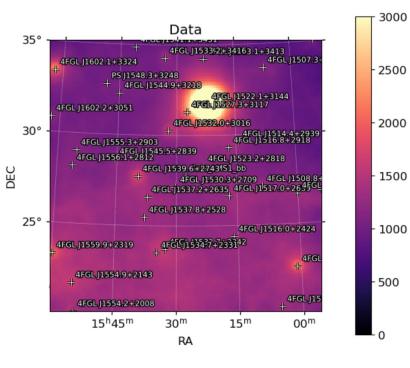
Stream	l (°)	b (°)	$d_{Sun}~({ m kpc})$	= + Sagittarius ?
	Golden	sample		+ Sayıllarius :
Indus	(344.8, 318.1)	(-46.1, -50.2)	16.6	* Globular Cluster M54 in the
LMS-1	(235.6, 43.8)	(36.8, -31.8)	18.1	position as Sagittarius core.
Orphan-Chenab	(50.8, 155.4)	(-57.4, 39.8)	20.0	* Hard to distinguish if the ga
PS1-D	(250.3, 205.5)	(18.5, 43.0)	22.9	emission comes from
Turranburra	(212.0, 225.4)	(-46.3, -36.9)	27.5	annihilation or from millise
Cetus-Palca	(284.8, 123.1)	(-44.9, -32.5)	33.4	pulsars inside M54.
\mathbf{Styx}	(314.5, 42.7)	(82.7, 30.0)	46.5	
Elqui	(312.2, 279.6)	(-79.8, -71.9)	50.1	A. J. Evans et

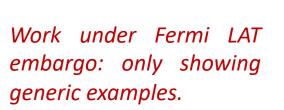
arXiv:2212.08194

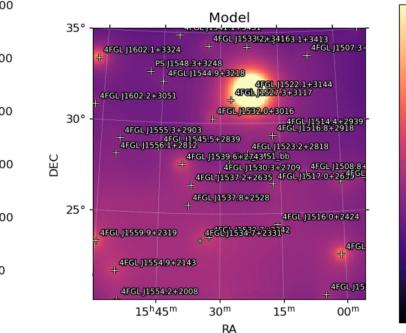

Sample selection for DM searches

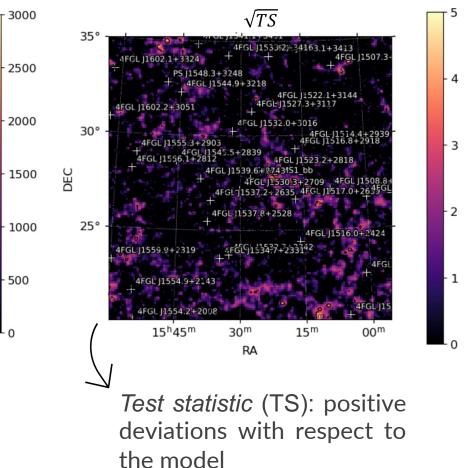
Stream	l (°)	b (°)	$d_{Sun}~({ m kpc})$
	Golden	sample	
Indus	(344.8, 318.1)	(-46.1, -50.2)	16.6
LMS-1	(235.6, 43.8)	(36.8, -31.8)	18.1
Orphan-Chenab	(50.8, 155.4)	(-57.4, 39.8)	20.0
PS1-D	(250.3, 205.5)	(18.5, 43.0)	22.9
Turranburra	(212.0, 225.4)	(-46.3, -36.9)	27.5
Cetus-Palca	(284.8, 123.1)	(-44.9, -32.5)	33.4
\mathbf{Styx}	(314.5, 42.7)	(82.7, 30.0)	46.5
Elqui	(312.2, 279.6)	(-79.8, -71.9)	50.1

Data Analysis – Fermipy




Spectral analysis technical setup


	Time domain (Gregorian)	2008-08-04 to 2023-04-01	
	Time domain (MET)	239557417 to 702032312	
oc]	Energy range	$500~{\rm MeV}$ - $500~{\rm GeV}$	
distance [kpc]	IRF	P8R3_SOURCE_V3	
anc	Event type	FRONT + BACK	
	Point-source catalog	4FGL-DR4	
ntric	ROI size	$15^{\circ} \ge 15^{\circ}$	
Heliocentric	Angular bin size	0.01°	
	Bins per energy decade	8	
	Galactic diffuse model	$gll_iem_v07.fits$	
	Isotropic diffuse model	iso_P8R3_SOURCE_V3_v1.txt	

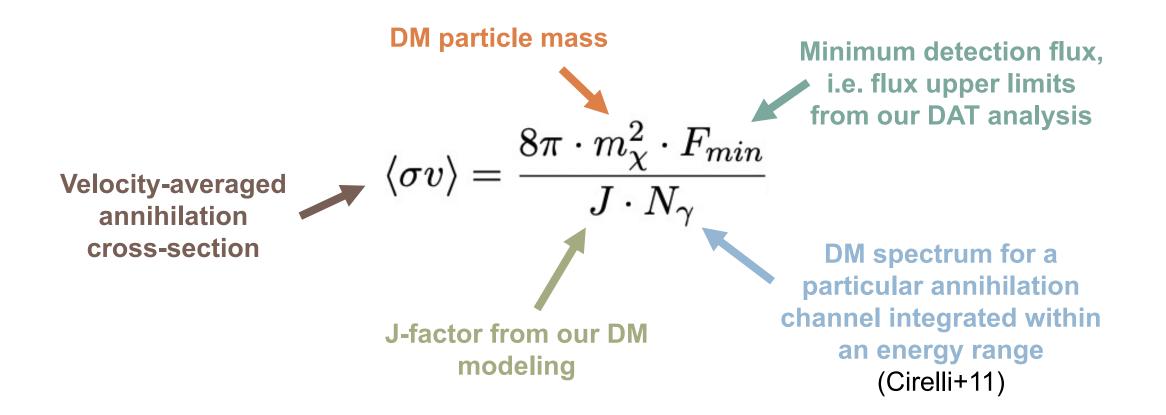

- * Sources within 3 degrees from the ROI center: free normalization and spectral shape.
- * Galactic diffuse component: free normalization and spectral index.
- * Isotropic diffuse component: free normalization.

Analysis Results: Example of skymaps



Analysis Results: Flux upper limits

DM constraints


* In the absence of a signal, we put constraints on the DM particle properties.

* We assume that all the DM is in the form of *Weakly Interacting Massive Particles* (WIMPs).

* Expected flux due to WIMPs annihilation:

$$\frac{d\Phi_{\gamma}}{dE}(E,\Delta\Omega,l.o.s) = \underbrace{\frac{d\phi_{\gamma}}{dE}(E)}_{AE} \times \underbrace{J(\Delta\Omega,l.o.s)}_{J(\Delta\Omega,l.o.s)} \times \underbrace{\int \rho_{DM}^{2} dl d\Omega}_{AStrophysical J-factor}$$
(DM particle mass, annihilation cross section $\langle \sigma v \rangle$, and DM spectrum) DM density profile

DM constraints

- * We assume that the streams maintain the same density distribution as their progenitors within the core ($r \le r_s$) (*e.g.*, Aguirre-Santaella et al. 2023).
- * Rest of the DM outside r_s gets lost due to tidal stripping.
- * Following results from DM-only cosmological simulations, we model the streams' core with a truncated **Navarro-Frenk-White** (NFW) DM density profile:

$$\begin{cases} r \leq r_s & \longrightarrow & \rho_{NFW}(r) = \frac{\rho_0}{\left(\frac{r}{r_s}\right)\left(1 + \frac{r}{r_s}\right)^2} & r_s: \text{ scale radius} \\ r > r_s & \longrightarrow & \rho_{NFW}(r) = 0 \end{cases}$$

- * We assume that the streams maintain the same density distribution as their progenitors within the core ($r \le r_s$).
- * Rest of the DM outside r_s gets lost due to tidal stripping.
- * Following results from DM-only cosmological simulations, we model the streams' core with a truncated **Navarro-Frenk-White** (NFW) DM density profile:

$$r \leq r_s \longrightarrow \rho_{NFW}(r) = \frac{\rho_0}{\left(\frac{r}{r_s}\right)\left(1 + \frac{r}{r_s}\right)^2}$$

* The extension in the sky of the DM subhalo hosted by each stream will be given by the angle subtended by r_s :

$$heta_s = \arctan\left(rac{r_s}{d_{Sun}}
ight)$$

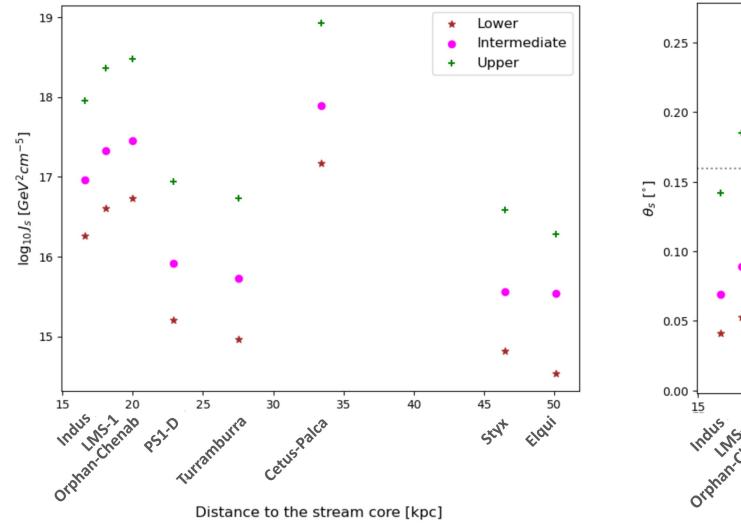
* We take the stellar mass of the stream from the literature and adopt three different mass-to-light (M/L) ratios to estimate the DM mass of each stream.

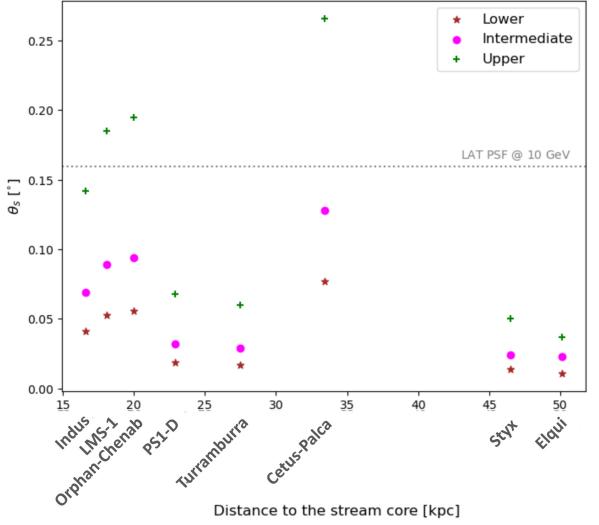
Stream	$M_{200} (M_{\odot})$			
	Lower	Intermediate	Upper	
Indus	3.4×10^4	1.7×10^{5}	$1.7 imes 10^6$	
LMS-1	1.0×10^{5}	5.0×10^5	$5.0 imes 10^6$	
Orphan-Chenab	1.6×10^5	8.0×10^5	8.0×10^{6}	
PS1-D	$7.5 imes 10^3$	3.75×10^4	$3.75 imes 10^5$	
Turranburra	7.6×10^3	3.8×10^4	3.8×10^5	
Cetus-Palca	$1.5 imes 10^6$	$7.5 imes 10^6$	7.5×10^7	
Styx	$1.8 imes 10^4$	$9.0 imes 10^4$	$9.0 imes 10^5$	
Elqui	1.04×10^4	$5.2 imes 10^4$	$5.2 imes 10^5$	

Lower: M/L = 2 (same DM mass than baryonic mass)

Intermediate: M/L = 5

Upper: M/L = 50

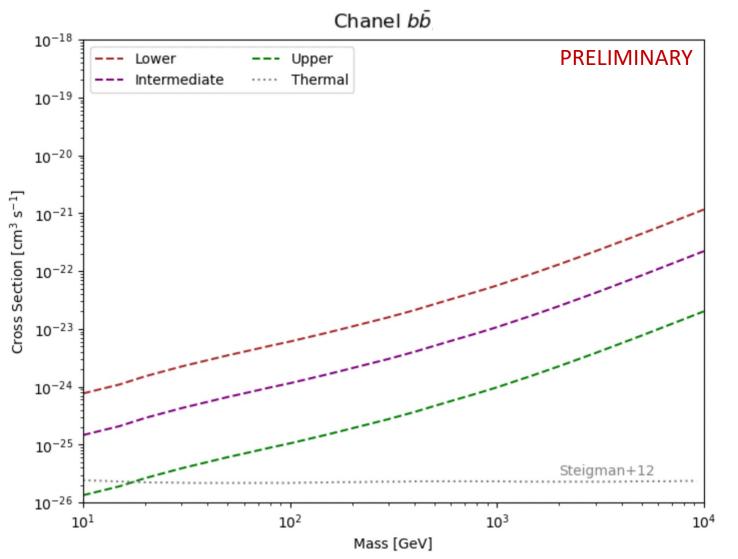

Typical M/L for dGs: 10 – 1000 (Q. Guo et al. 2019, arXiv:1908.00046v2).


* We take the stellar mass of the stream from the literature and adopt three different mass-to-light (M/L) ratios to estimate the DM mass of each stream.

	Stream		$M_{200} (M_{\odot})$		
		Lower	Intermediate	Upper	
	Indus	3.4×10^4	1.7×10^5	1.7×10^{6}	Lower: $M/L = 2$
\star	LMS-1	1.0×10^{5}	5.0×10^5	5.0×10^{6}	(same DM mass than
\star	Orphan-Chenab	1.6×10^5	8.0×10^5	8.0×10^{6}	baryonic mass)
	PS1-D	$7.5 imes 10^3$	3.75×10^4	3.75×10^5	
	Turranburra	7.6×10^3	3.8×10^4	3.8×10^5	Intermediate: M/L = 5
	Cetus-Palca	$1.5 imes 10^6$	$7.5 imes 10^6$	7.5×10^7	
	Styx	$1.8 imes 10^4$	$9.0 imes 10^4$	$9.0 imes 10^5$	<i>Upper</i> : M/L = 50
	Elqui	$1.04 imes 10^4$	$5.2 imes 10^4$	$5.2 imes 10^5$	


★ In cases where no estimates of the current streams' mass is available, we consider the stellar mass of the progenitor as the stellar mass of the stream: during the stretching process, the streams lose DM while the total baryon matter content remains the same.

Streams' J-factors and Angular sizes


Streams' J-factors and Angular sizes

These objects can be treated as point-lilke sources in the analysis, this way simplifying it.

²⁰th MultiDark Consolider Workshop

DM constraints: Example of individual limits

Work under Fermi LAT embargo: only showing generic examples.

20th MultiDark Consolider Workshop

General Remarks

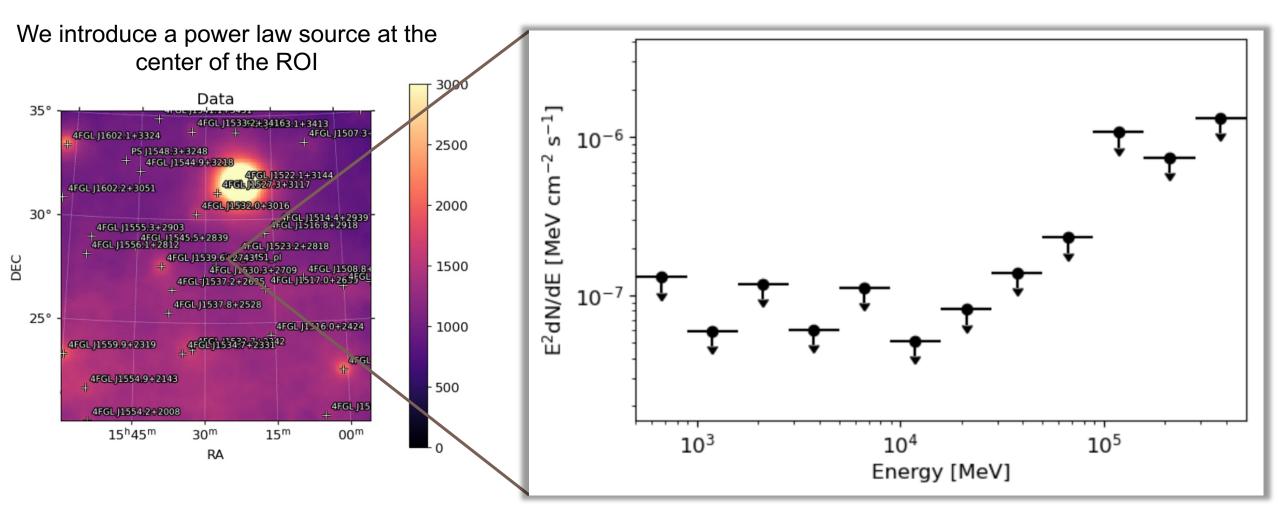
* Our main objective is to use stellar streams as a new tool to shed light on the properties of the DM particle.

Ongoing taks

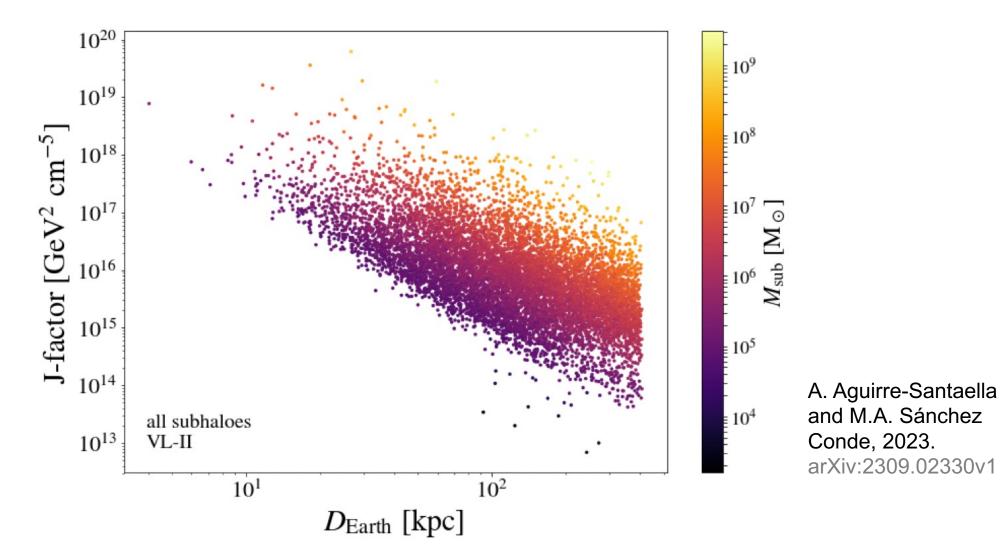
- * Combining the results for the individual streams to improve the DM constraints (combined likelihood analysis).
- * Considering the inclusion of Sagittarius stream in our golden sample.
- * Working on the paper's draft.

Search of DM annihilation in Stellar Streams with the Fermi LAT

Thank you!


20th MultiDark Workshop

October 25-27, 2023



Backup Slides

Analysis Results: Flux upper limits with a Power Law

Sample selection: Distance

